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Abstract—In this study, we develop 400 malware variants of
four different types of test malware samples by rewriting their
original source code with OpenAI’s gpt-3.5-turbo model [1], and
investigate if these samples can be detected by anti-virus. From
this investigation, we find that about half of the malware variant
function correctly and 37.6+£33.6 % of them evade anti-virus
detection for each malware type and anti-virus.
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I. INTRODUCTION

With the rapid social implementation of large language
models (LLMs) due to recent advances in computing and
deep learning technologies, the exploitation of LLMs has
become a new threat in cybersecurity. It is known that malware
source code can actually be generated by LLMs [2]. This
study focuses on the impact of malware variant development
by LLMs on anti-virus detection. In this study, we develop
400 malware variants of four different types of test malware
samples by rewriting their original source code with OpenAl’s
gpt-3.5-turbo model [1]. Out of these, 211 can be compiled
into executable files and retain the same functionality as the
original test samples. We investigate six anti-virus software
using 160 variants from these samples, and find that 37.6+£33.6
% of the samples evade detection by the anti-virus for each
malware type and anti-virus.

II. METHODOLOGY AND RESULTS
A. Creating Malware Variants Using ChatGPT

We utilize the gpt-3.5-turbo model via the OpenAl API
[3] to generate malware variants. Starting with four original
test samples—worm, keylogger, ransomware, and fileless mal-
ware—targeting Windows, we use the LLM to create these
in different languages: Python for the worm, Go for the
ransomware and keylogger, and C++ for the fileless malware.
Each original sample is then used to generate 100 variants,
with prompts instructing the model to maintain the original
functionality. The worm variants are converted to executables
using Pylnstaller [4], while the other malware types are
compiled. We manually verify if the generated executables
retain the original functionality and evaluate the similarity of
the source code and binaries between the variants and the
original samples.

Table I presents the number of variant samples that retain
the same functionality as the original samples. For the source
codes that cannot be converted into executable files, the
issues encountered include syntactical errors, incomplete code

TABLE I
CHATGPT GENERATED SAMPLES THAT RETAIN THE SAME
FUNCTIONALITY AS THE ORIGINAL

Type #Samples
‘Worm 58 7100
Ransomware 517100
Keylogger 46 /100
Fileless 56 /100
TABLE 11
SIMILARITY TO THE ORIGINAL SAMPLE [MEAN=%STD.]
Type Text Binary
BLEU Token ssdeep TLSH
Worm 0.83 £0.08 -27+33 96+0.0 1.5 + 0.95
Keylogger 096 £ 0.06 -26+52 43+16 8.1 +42
Ransomware  0.87 +£ 0.05 -1.8 4+ 3.9 11 +23 12 £ 5.1
Fileless 059 +£0.09 -194+£96 00+00 93 £ 55

generation, the use of libraries not installed in the develop-
ment environment, and modifications to hard-coded constants.
Table II shows the BLEU scores [5] of each variant sample
compared to the original sample, the increase or decrease in
the number of tokens matching the regular expression “\bfa-
ZA-Z0-9_]+\b”, as well as the similarity scores calculated
using ssdeep [6] and TLSH [7]. Fileless malware samples are
similar at the textual level but show significant differences in
their binaries. In contrast, Worm, Keylogger, and Ransomware
samples exhibit similarities in both their source code and
binaries. These differences are likely due to factors such as
the programming language used, the implemented logic, and
the compiler.

B. Investigating on Anti-Virus detection

The variants are divided into two groups, each containing
80 samples, with 20 samples per malware type across the
four different malware types. This division allows for an
investigation into anti-virus detection of both unknown and
known test samples. The analysis involves executing samples
in a local environment and uploading them to VirusTotal
[8]. Six anti-virus software, chosen based on popularity and
market share, are tested in a Windows 11 Enterprise Evaluation
virtual environment connected to the Internet for updates.
Four of these products include both file scan and behavior
monitoring, while two have only file scan capabilities. The
specific software names are withheld for ethical reasons. Test
samples are introduced via a shared folder. The analysis
proceeds as follows.
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Fig. 1. Keylogger in Groupl detection result in procedure 1)
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Fig. 2. Keylogger in Groupl detection result in procedure 3)

S.1) Local: Group 1 samples are scanned and executed daily
in a Windows virtual environment with anti-virus soft-
ware installed. The anti-virus response is observed over
7 days when an unknown sample appears on one anti-
virus product.

S.2) VT: Group 1 samples are uploaded to VirusTotal, and the
number of anti-virus engines detecting them is recorded,
aiming to increase endpoint detections.

S.3) Local: Group 1 samples are scanned and executed again
92 days later, with anti-virus responses observed over 7
days to monitor any increase in endpoint detections.

S.4) Local: Group 2 samples are scanned and executed, with
anti-virus responses observed over 7 days.

S.5) VT: Group 2 samples are uploaded to VirusTotal, and the
number of anti-virus engines detecting them is recorded.

Steps 2), 3), 4), and 5) are scheduled strategically to assess
the impact of VirusTotal uploads and anti-virus database
updates on detection rates, with observations continuing for
7 days. The results vary depending on the type of malware
sample. For the worm, five anti-virus fail to detect the worm
samples in Group 2. For the keylogger, four anti-virus fail
to detect the keylogger samples in Group 2, while two anti-
virus detect these samples consistently from the outset. For
the ransomware, the variants are detected by the behavior.
For fileless malware, detection rates are low, indicating that
it may not be considered a significant threat. The samples
that evades detection by anti-virus’s signature-based methods
demonstrate that the source code modification is effective in
avoiding detection. Fig. 1 shows the detection results for the
20 keylogger samples in Group 1 during S.1), both through
file scanning (a) and behavior monitoring (b). Fig. 2 presents
the detection results for the keyloggers in Group 1 during S.3),
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Fig. 3. Keylogger in Group2 detection result in procedure 4)

while Fig. 3 illustrates the detection results for the keyloggers
in Group 2 during S.4). These results indicate that not all
variants are detected, as some samples were able to evade
detection. The increase in the number of detected samples
after the submission of Group 1 and Group 2 to VirusTotal
suggests that VirusTotal is being utilized as an intelligence
source by anti-virus to update their signatures.

III. CONCLUSION

In this study, we employ LLM to modify the source code
of test malware samples, thereby generating malware variants,
and investigate the detection capabilities of anti-virus software
against these variants. The results indicate that approximately
half of the generated variant samples from the 100 samples
created for each type of malware can be converted into
executable files while retaining the functionality of the original
samples. Our analysis of the impact of these variants on anti-
virus detection reveals specific tendencies in how anti-virus
software handle both unknown and known malware samples.

Ethic: To prevent misuse, experiment prompts are not dis-
closed and we have refrained from mentioning any particular
anti-virus, focusing instead on their general impact.
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