
Experiment 1: All 100 generated codes were classified into one of the existing categories.
Experiment 2: We successfully generated PoC code for 14 categories, while failing for 2 categories.

Compilation Success: 12 of the 14 generated codes were compilable, with 2 requiring minor fixes.
Functionality: 3 of the 12 compiled codes demonstrated evasion after manual parameter tuning (0 worked initially).

Poster: Conventional LLM Use Struggles to Generate
Sandbox Evasion Code from Unseen Categories

Yukihiro Higashi1, Hikaru Matsuzawa1, Rui Tanabe1,2, Yin Minn Pa Pa1, Katsunari Yoshioka1

1Yokohama National University, 2Juntendo University

ABSTRACT

METHODOLOGY

RESULTS

CONCLUSION

We investigate whether conventional use of large language models (LLMs) can generate compilable and functional sandbox 
evasion code belonging to unseen categories. Our experiments using OpenAI's o3-mini-2025-01-31 model showed that while 
LLMs struggle to generate Proof-of-Concept (PoC) code for truly novel evasion techniques, it can reproduce PoC code for 
known categories when guided. This has significant implications for cybersecurity risk assessment.

EXPERIMENT 1: UNSEEN CATEGORY GENERATION
1. Prompted LLM to generate sandbox evasion code outside of 16 
known categories [1].
2. Used classifier to identify generated code’s category.
3,4. When the PoC code of a known category is generated, provide 
feedback to the prompt and repeat the process up to 100 times.

Acknowledgement: This work is based on results obtained from a project, JPNP24003, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).This work was 
supported by JSPS KAKENHI Grant Number JP23K16879.

EXPERIMENT 2: KNOWN CATEGORY REPRODUCTION
1. Hide one of the 16 known categories while providing LLM with 
the remaining 15 categories and prompting it to generate the PoC 
code of the unseen category.
2,3,4. Applied the same generate-classify-feedback loop as in 
Experiment 1, repeating the process up to 100 times.
5. Evaluated generated code for compilation success and sandbox 
evasion capability.
• Repeat the experiment for all 16 categories.

Conventional LLM use can reproduce codes of known sandbox evasion categories when guided, but struggles to generate 
unseen ones:
• Struggles with Novelty: Generating genuinely new evasion techniques appears beyond the capabilities of the direct 

prompting and feedback method used in our study. 
• Requires Human Intervention: Generated PoC code needs manual tuning to become functional, highlighting the gap 

between syntactic correctness and practical effectiveness. 
• Primary Risk: The immediate threat lies not in creating novel attacks autonomously, but in accelerating the reproduction 

of known techniques, even with the limitations of this method.

4

90

14

100 100

1

75

1
8

1 5 4 5 6 12

46

0

20

40

60

80

100

Memory
Fingerprinting

Exception
Handling

CPU
Fingerprinting

Table
Descriptors

Traps Timing Stalling Human
Interaction

Registry System
Environment

WMI Process
Environment

File System List
Processes

List Services Drivers

N
um

be
r o

f A
tt

em
pt

s

1. Setup Experiment
Provide LLM with a list of categories and a generation goal.

(Exp1: All 16, find new | Exp2: 15, find hidden)

2. Generate & Classify Code
LLM generates PoC code, and the classifier assigns it a category.

3. Evaluate Result
Evaluate if a code of unseen category

has been generated.

Success

Yes

4. Feedback
Inform LLM of the incorrect result.

No

Retry

Failure
(After 100 trials)

5. Evaluate compilation and Functionality

[1] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A systematical and longitudinal study of evasive behaviors in windows malware,” Computers & Security, vol. 113, p. 102550, 2022



Poster: Conventional LLM Use Struggles
to Generate Sandbox Evasion Code

from Unseen Categories
Yukihiro Higashi*, Hikaru Matsuzawa*, Rui Tanabe*,§, Yin Minn Pa Pa*, Katsunari Yoshioka*

*Yokohama National University, §Juntendo University
Email: {higashi-yukihiro-rd,matsuzawa-hikaru-nx}@ynu.jp,{tanabe-rui-xj,yinminn-papa-jp,yoshioka}@ynu.ac.jp

Abstract—We investigate whether conventional use of large
language models (LLMs) can generate compilable and func-
tional sandbox evasion code belonging to unseen category. We
conducted two experiments using OpenAI’s o3-mini-2025-01-31
model. In the first, we asked the LLM to generate Proof-of-
Concept (PoC) code outside 16 known sandbox evasion categories.
All 100 generated codes were classified into existing categories,
resulting in 0% success for generating unseen category. In the
second, we omitted one category at a time and successfully
generated codes that match the omitted one in 14 out of 16.

We further evaluated the 14 generated codes for compilability:
10 compiled successfully without modification, and 2 more
after minor fixes. While all 12 compiled files failed to evade
sandboxes without modification, 3 demonstrated the intended
behavior after manual parameter tuning. This indicates that
conventional LLM use can reproduce known sandbox evasion
categories when guided but struggle to generate unseen ones
or generate compilable and functional code without human
intervention. We provide empirical evidence for assessing LLM
risks in cybersecurity.

Index Terms—Sandbox Evasion, LLM (Large Language
Model), Code Generation, Code Classification

I. INTRODUCTION

Large language models (LLMs) have demonstrated remark-
able capabilities in generating text, code, and complex rea-
soning [1]. However, their potential misuse in cybersecurity,
particularly for generating malicious code, is an emerging
concern. One important threat is the generation of sandbox
evasion techniques, which allow malware to detect and avoid
automated analysis systems [2].

Prior research systematically classified 92 sandbox evasion
techniques into 16 categories [3], providing a framework for
understanding this landscape. However, it remains unclear
whether large language models (LLMs) can autonomously
generate unseen sandbox evasion techniques beyond these
categories, or accurately reproduce known ones. To explore
this gap, we began by evaluating LLM capabilities using a
simple and straightforward approach as a first step guided by
the following research question (RQ).

• Research Question: Can conventional LLM use gen-
erate compilable and functional sandbox evasion code
belonging to unseen category?

We address this question through two experiments using
OpenAI’s LLM (o3-mini-2025-01-31 model [1]) to generate
C++ sandbox evasion PoC code. In the first experiment, we

prompted the model to generate code belonging to unseen
sandbox evasion category that do not fall into any of the
16 known categories. We iteratively prompted the LLM up
to 100 times, using our classifier (Section II-A) to identify
the category of each generated code and providing feed-
back to avoid previously generated categories. We use this
generate–classify–feedback method to simulate a real-world
scenario where undocumented evasion strategies may emerge.

In Experiment 2, we simulate an imaginary closed-world
setting in which exactly 16 sandbox evasion categories exist.
In each run, we hide one known category and provide the LLM
with the remaining 15 categories names and descriptions. We
then prompt the model to generate a technique not belonging
to any of the provided 15 categories. If the LLM successfully
produces code corresponding to the withheld category, this
indicates that it generated ʠ unseenʡ category within the
boundaries of this imagined world. For each target category,
we repeated a generate-classify-feedback loop up to 100 times,
instructing the LLM to retry whenever the classifier (Section
II-A) failed to identify the intended category. We evaluated
the generated code on three criteria: (1) category alignment
(as classified), (2) successful compilation, and (3) sandbox
evasion functionality verified through sandboxes and user PC.

Our results show that LLM failed to generate PoC code
belonging to unseen sandbox evasion category across 100
attempts. We successfully reproduced withheld known cate-
gories in 14 out of 16. Among the generated PoC codes, 12
out of 14 were compilable after minor fixes, but only 3 out
of 12 codes demonstrated sandbox evasion functionality after
manual parameter adjustments.

Our contributions are as follows:
• We systematically evaluate the ability of LLM to generate

unseen sandbox evasion categories.
• We introduce a generate–classify–feedback method to

guide LLM outputs toward specific evasion behaviors.
• We provide empirical evidence quantifying the current

capabilities and limitations of LLMs in cybersecurity
threat generation.

Preliminaries: Throughout this study, we use the term con-
ventional LLM use to refer to direct LLM prompting and
feedback loop mechanism (please reference Section II-B),
without fine-tuning, retrieval-argumented generation (RAG),
or multi-agent orchestration.



II. METHODOLOGY

A. Classifier

To determine which sandbox evasion category each gener-
ated code belongs to, we implemented a classifier. The classi-
fier takes a PoC code as input and outputs the corresponding
sandbox evasion category. We employed OpenAI’s gpt-4o-
2024-08-06 model [4] for this classification. For sandbox
evasion categories, we used descriptions based on Galloro
et al. paper [3], which provides a comprehensive survey of
92 sandbox evasion techniques divided into 16 categories by
analyzing malware samples collected during 2010 and 2019.
Evaluation of Classifier: To create a labeled dataset for eval-
uating our LLM-based classifier, one of the authors manually
annotated 232 proof-of-concept (PoC) samples. These samples
were collected from publicly available repositories including
AlKhaser, Pafish, Unprotect, and Check Point [5]–[8]. Each
sample was assigned to one of the 16 categories based on its
behavior, forming the ground truth for our classification task.

We evaluated the performance of our LLM-based classifier
by comparing its predicted categories against this manually
curated ground truth. The classifier achieved a micro-averaged
precision and recall of 0.88. To ensure robustness, we designed
the classifier prompt using system and user roles, included full
descriptions of all 16 categories, and applied majority voting
over five independent runs.

B. Experiment Procedure

We used OpenAI’s o3-mini-2025-01-31 model [1] to gen-
erate C++ PoC codes for sandbox evasion.

Experiment 1: In this experiment, we prompted the LLM
to generate unseen sandbox evasion categories. We provided
the LLM with descriptions of all 16 existing categories of
known techniques and instructed it to generate PoC code
for a unseen sandbox evasion categories that does not fall
into any of these predefined ones. The generated code was
then evaluated using our classifier (detailed in Section II-A).
If the classifier assigned the generated code to one of the
existing 16 categories, this classification result was provided
as feedback to the LLM, along with an instruction to generate
a different technique. This iterative generate-classify-feedback
process was repeated up to a maximum of 100 times.

Experiment 2: In this experiment, we tested whether the
LLM could generate code for a known category when that
category was hidden. We performed 16 distinct experimental
runs, each focusing on one specific target category from the set
of 16. In each run, the LLM was prompted with descriptions
of the 15 non-target categories (i.e., all categories except the
target one for that run). The LLM was instructed to generate
PoC code for a technique intended to belong exclusively to the
omitted target category (effectively, a technique “not on the
provided list” of 15). The generated code was subsequently
evaluated by the same classifier detailed in Section II-A.If
the resulting classification did not match the intended target
category, the actual classification outcome (i.e., the category
the code was assigned to) was fed back to the LLM. The LLM

was then instructed to try again to generate code correspond-
ing specifically to the target category. This generate-classify-
feedback cycle was repeated up to 100 times for each of the
16 target categories.

Feedback Loop Mechanism: Both experiments employed
a generate-classify-feedback loop for up to 100 iterations. This
facilitated iterative refinement based on the classifier’s output:

• Contextual Interaction and Corrective Feedback:
Conversational history (previous prompts and responses)
was maintained and provided as context for subsequent
LLM interactions. If the classifier identified the generated
code as belonging to an existing category (Exp. 1) or a
non-target category (Exp. 2), specific feedback indicating
the actual assigned category was provided to the LLM.

• Guided Re-generation: Along with this feedback, the
LLM was re-instructed to review the history and category
list, generate a substantively different technique adher-
ing to the original requirements, and avoid repeating the
previous unsuccessful attempt. The original prompt was
also re-submitted with the feedback for reference.

Evaluation of Generated PoC codes: For codes generated
in Experiment 2 that were successfully classified into the target
category, we performed the following evaluations:

1) Compilability Check: We compiled the generated C++
code using Visual Studio to determine if it was syntac-
tically correct and generated an executable file.

2) Sandbox Evasion Functionality Check: Each file is
implemented to output the sandbox evasion result via
the command prompt. If the string ’Sandbox’ appears
on the prompt, it indicates that sandbox evasion was
successful. We uploaded these files to VirusTotal [9]. We
then evaluated the sandbox evasion functionality by ex-
amining the screenshots of the sandboxes. Furthermore,
we tested these samples in a real user PC.

III. GENERATING SANDBOX EVASION TECHNIQUES

A. Experiment 1

In Experiment 1, the LLM failed to generate any code that
was classified outside the 16 known categories across 100
attempts, indicating an inability to generate unseen categories
under the conventional LLM use.

B. Experiment 2

Within a closed-world setting where one known category
was omitted, the LLM successfully reproduced code matching
the withheld category in 14 out of 16 cases. Figure 1 shows the
number of code generation attempts per category . Categories
such asʠ Exception Handlingʡ andʠ Human Interactionʡ
succeeded within a few attempts, whileʠ Table Descriptorsʡ
andʠ Trapsʡfailed after 100 iterations. This variation high-
lights that the LLMʟs ability to reproduce known techniques
varies significantly by category, even under guided prompting.

Out of the 14 categories that successfully generated PoC
codes that belong to the target category, 10 PoC codes (71%)
compiled successfully without any modifications, and 2 more



� 	� 
� �� �� ���

�1*"%.�,&��1+/������&,.��!()1.%/�

�%*,.4��(+'%.-.(+0(+'

�3#%-0(,+��!+$)(+'

�����(+'%.-.(+0(+'

�!")%��%/#.(-0,./

�.!-/

�(*(+'

�0!))(+'

�1*!+��+0%.!#0(,+

�%'(/0.4

�4/0%*��+2(.,+*%+0

 ��

�.,#%//��+2(.,+*%+0

�()%��4/0%*

�(/0��.,#%//%/

�(/0��%.2(#%/

�.(2%./

�
!
+
$
"
,
3
��
2
!
/
(,
+
��
!
0
%
'
,
.
4




��

�


�


�

�

�

�

�




�

�

�	


�

���

���

�00%*-0/�!+$��1##%//��!()1.%�-%.��!0%',.4����	�

�%/1)0

�1##%//

�!()

Fig. 1. The number of code generation attempts in Experiment 2.

PoC codes (14%) compiled successfully after minor fixes. As
a result, 12 PoC codes (86%) were compiled successfully,
indicating that LLMs can reproduce known sandbox evasion
techniques when guided but struggle to generate compilable
and functional code without human intervention.

Furthermore, by executing these 12 files in VirusTotal’s
CAPE Sandbox [10] and Zenbox [11], we evaluated their
sandbox evasion functionalities. At first, none of the files
detected both environments as sandboxes (0%). We found that
the parameter to determine the environment needs modification
and thus after manual parameter tuning, 3 files (25%) demon-
strated sandbox evasion. For these 3 files, we also executed
them in a real user environment. The owner of the PC is our
laboratory member and uses it for daily research and private
usage. As a result, none of the codes detected the environment
as a sandbox. These results suggest that while the LLM can
generate code that our classifier identified as belonging to the
intended category and compilable code, achieving functional
effectiveness often requires human intervention, indicating a
gap in generating code that is truly effective without refine-
ment. Note that the amount of user PC is not enough and thus
leave further evaluation for future work.

IV. DISCUSSION

Regarding generating entirely unseen techniques (beyond
all known categories), the LLM failed (Exp. 1). This sug-
gests that the LLM, under these experimental conditions,
struggled to generate concepts fundamentally different from
known patterns, even with iterative feedback. This difficulty
might indicate a reliance on learned examples rather than
demonstrating inventive capabilities in this specific domain. It
did not demonstrate the ability to generate genuinely unseen
evasion concepts not represented in the known categories.

However, when asked to generate a technique for a known
category omitted from a provided list (Exp. 2), the LLM was
largely successful (14/16 categories), aided by the feedback
loop. This shows an ability to work with implicitly defined
targets and generate specific code based on exclusion criteria,

demonstrating the ability to generate techniques for the spe-
cific category that was omitted from the provided list, albeit
within the realm of known concepts.

The subsequent evaluation axes provide further context.
While the generated code was often compilable, its lack of out-
of-the-box functional effectiveness reinforces the limitation.
The LLM can generate syntactically valid code representing
a known concept, but generating functionally effective code
often requires human refinement, suggesting the capability
of this method to generate practically useful code without
intervention is limited.

Limitations: Our evaluation focused on direct prompting
with feedback loops; we did not explore advanced methods
like retrieval or agent-based approaches. Thus, findings are
limited and future work is needed to assess whether more
sophisticated techniques improve LLM performance.

V. CONCLUSION

We evaluated the LLMʟs ability to generate sandbox eva-
sion techniques using direct prompting with feedback. While
it failed to generate unseen sandbox evasion categories, it
successfully generated code for 14 out of 16 known categories
when given partial guidance. Most code compiled (12/14), but
only 3 achieved functional evasion after manual tuning. These
results highlight the limits of conventional LLM use, showing
it can reproduce known techniques but struggles with novelty
and out-of-the-box functionalityʕoffering concrete insights
for cybersecurity risk assessment.

Ethical Considerations. This study examines whether
LLMs can be misused to generate sandbox-evasive code.
Given rising concerns about jailbreak prompts and malware
discussions online, we aim to assess these risks systematically.
To prevent misuse, implementation details are omitted, and
artifacts are available upon request to verified researchers.

Acknowledgements. This paper is based on results obtained from a
project, JPNP24003, commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO).This work was
supported by JSPS KAKENHI Grant Number JP23K16879.

REFERENCES

[1] “OpenAI o3-mini.” [Online]. Available:
https://openai.com/index/openai-o3-mini/

[2] “Opwnai: Cybercriminals starting to use chatgpt,” Check Point. Retrieved
May, vol. 15, p. 2023, 2023.

[3] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A
systematical and longitudinal study of evasive behaviors in windows
malware,” Computers & Security, vol. 113, p. 102550, 2022.

[4] “OpenAI hello gpt-4o.” [Online]. Available:
https://openai.com/index/hello-gpt-4o/

[5] “Al-khaser.” [Online]. Available: https://github.com/ayoubfaouzi/al-
khaser

[6] “Pafish.” [Online]. Available: https://github.com/a0rtega/pafish
[7] “Unprotect - the ultimate source of information about malware

techniques.” [Online]. Available: https://unprotect.it/
[8] “Evasion techniques.” [Online]. Available:

https://evasions.checkpoint.com/
[9] “VirusTotal - Home.” [Online]. Available:

https://www.virustotal.com/gui/home/upload
[10] “CAPE Sandbox.” [Online]. Available:

https://capev2.readthedocs.io/en/latest/
[11] “VirusTotal In-house Sandboxes - behavioural analysis products.”

[Online]. Available: https://docs.virustotal.com/docs/in-house-sandboxes


	Introduction
	Motivation
	DDoS Defense Mechanisms in NTP in the wild
	XDP/eBPF for DoS defense

	Design and Implementation
	Threat Model
	Technical Details
	Preliminary Results

	Conclusion
	Acknowledgments
	References
	Introduction
	Key Contributions
	Methodology and System Components
	AutoAudit Pipeline
	Metrics
	Risk Analysis

	Conclusion
	Future Work
	References
	Introduction
	Design and Implementation
	Threat Model & Security Objectives
	Phase 1: Data Pre-processing
	Phase 2: CNN Model Development and Optimization
	Phase 3: Deployment within the Keystone TEE
	Phase 4: Inference & Detection

	Conclusion and Future Work
	References
	Introduction
	Background and Problem Setting
	FeRA Overview and Design
	Experimental Evaluation
	Conclusions and Future Work
	References
	Introduction
	Dataset Design and Construction
	CAN Message Format
	Attack Generation Process
	Attack Logic Definitions
	Probabilistic Interpretation

	System Design and Evaluation
	Feature Engineering
	Model Benchmarking
	Results and Evaluation

	Discussion and Conclusion
	References
	Introduction
	Background & Related Work
	Diffusion Models and Purification

	Methodology: FlowPure
	Continuous Normalizing Flows
	Conditional Flow Matching
	Implementation Details

	Evaluation
	Preprocessor-Blind Attacks
	Fully Adaptive White-Box Attacks

	Conclusion
	References
	Introduction
	Background
	The Helium Software Project
	Scope
	Architecture
	Protocol & Circuit Layers
	Node Layer
	Networking Layer
	Application Layer


	Conclusion & Future Work
	References
	Introduction
	Methodology
	Unlearning Algorithm
	Efficient Zero-Knowledge Proof Generation

	Evaluation
	Conclusion and Future Work
	References
	Introduction
	Background and Problem Statement
	Definition of Efficiency Attacks
	Adversarial Exploitation of Dynamic Behaviors in DDLSs
	Threat Model

	Analysis and Preliminary Findings
	Future Work
	References
	Introduction
	Background & Problem Statement
	Solution Design
	Initial Evaluation
	Research Opportunities

